SECONDARY CELLS USING POLY(2,5-THIENYLENE)S AND POLY(2,5-PYRROLYLENE)S AS MATERIALS FOR POSITIVE ELECTRODES. $Zn|Zni_2|i_2$ SECONDARY CELL

Takakazu YAMAMOTO,* Masanobu ZAMA, and Akio YAMAMOTO Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 227

Poly(2,5-thienylene), poly(2,5-pyrrolylene), and their derivatives are useful as materials for positive electrodes of ${\rm Zn}|{\rm ZnI}_2|$ cation-exchange membrane $|{\rm ZnI}_2|$ secondary cells, which show about 100% current efficiency and 85% energy efficiency and are rechargeable more than 200 times.

Utilization of electric-conducting π -conjugated polymers as materials for electrodes of primary and secondary cells is the subject of recent interest. $^{1-4}$) As for the preparative methods of poly(2,5-thienylene), poly(2,5-pyrrolylene), and their derivatives, the following two methods have been developed.

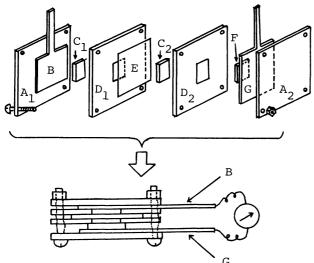
Method A: Ni-catalyzed dehalogenation polycondensation of 2,5-dihalothiophene, its derivatives, and N-substituted 2,5-dihalopyrrole. 5)

Method B: electrochemical oxidation of thiophene, pyrrole, and their derivatives. 6)

We previously reported that poly(2,5-thienylene) prepared by Method A served as materials for primary and secondary cells using metal iodides as electrolytes. 1) We now report charge-discharge profiles of $Zn|ZnI_2|$ cation-exchange membrane $|ZnI_2|I_2$ (hereafter denoted as $Zn|ZnI_2|I_2$) secondary cells using the polymers prepared by Methods A and B as materials for positive electrodes. The polymers absorb I_2^{-5} to form positively charged polymer and $I_n^{-1}(I_2^{-1})$ for poly(2,5-thienylene) 1) and iodine-polymer adducts thus formed are electrically conductive. Therefore, the iodine-polymer adducts serve as good active materials of positive electrodes. The positive electrodes were prepared as described below.

Electrode using polymer prepared by Method A: A CHCl_3 -soluble fraction⁵⁾ of the polymer was dissolved in CHCl_3 . To the CHCl_3 solution, carbon powder (Kejen Black EC, 20 wt-% per polymer) was added with stirring. A part of the suspension thus obtained was taken out with a syringe and spread uniformly on a carbon fiber plate (Kureha carbon fiber KGF 100, 10 mm x 10 mm), and CHCl_3 was removed by evaporation. The amount of polymer overlaid on the carbon fiber plate was 10 mg.

Electrode using polymer prepared by Method B: An anhydrous $C_6H_5NO_2$ solution containing 0.2 mol/dm³ of monomer (thiophene, pyrrole, or N-methylpyrrole) and 0.1 mol/dm³ of $[Bu_4N][BF_4]$ was electrolyzed for 2 h at 5 °C at constant electric current (1 mA/cm²) by using the carbon fiber plate (10 mm x 10 mm) and platinum plate as anode and cathode, respectively. The electrolysis gave a film of polymer (3-5 mg) on the surface of the carbon fiber plate. The polymer-coated carbon fiber plate was used as the positive electrode of the secondary cell.


Figure 1 shows a sketch of the $\mathrm{Zn} | \mathrm{ZnI}_2 | \mathrm{I}_2$ secondary cell. An aqueous solution of ZnI_2 (0.5 mol/dm³) is used as catholyte (C_1 in Fig. 1) and anolyte (C_2), and the catholyte and anolyte are separated by a cation-exchange membrane (Selemion CMV, thickness = 0.13 mm, E in Fig. 1). When the cell is charged, I¯ ion in the anolyte loses its charge at the polymer-coated positive electrode (F) and I₂ thus formed is trapped by the polymer. A part of I₂ not trapped by the polymer exists as pure I₂ or I₃¯ (formed by the reaction of I¯ and I₂) in the anode compartment (C_2).

Charge (positive electrode):
$$I \longrightarrow (1/2)I_2 + e$$
 (1)
 $I_2 + polymer \Longrightarrow iodine-polymer adduct (2) $I_2 + I \Longrightarrow I_3$ (3)$

The cation-exchange membrane prevents moving of I_3^- to the negative electrode side, and thus the self-discharge of the cell by the reaction of Zn and I_3^- (Zn + $I_3^- \rightarrow$ Zn I_2^- + I_3^-) is prevented. The negative electrode reaction is expressed as follows:

Charge (negative electrode):
$$Zn^{2+} + 2e^{-} \longrightarrow Zn$$
 (4)

At the stage of discharge, reactions reverse to those expressed by Eqs. 1 and 4 take place. Figure 2 shows charge and discharge curves of the ${\tt Zn|ZnI_2|I_2}$ secondary

 A_1 and A_2 : board, B: negative electrode (Zn), C_1 and C_2 : glass fiber (Toyo Roshi type GA 100, 10 mm x 10 mm) impregnated with an aqueous solution (0.1 cm³) of ZnI_2 (0.5 mol/dm³), D_1 and D_2 : board with hole (10 mm x 10 mm), E: cation-exchange membrane, F: polymer-coated carbon fiber plate (10 mm x 10 mm), G: Pt-plate.

Fig. 1. Sketch of secondary cell.

cell using poly(2,5thienylene) prepared by
Method A. Charge and discharge are performed at
constant electric current
(2 mA/cm²). As seen in
Fig. 2, the charging starts
with initial voltage of 1.36
V, and after about 48 min
the charging voltage reaches
1.50 V, where the charging
is stopped. After 1 min of
pause time, the cell is discharged with 1.32 V of initial voltage. After 48 min

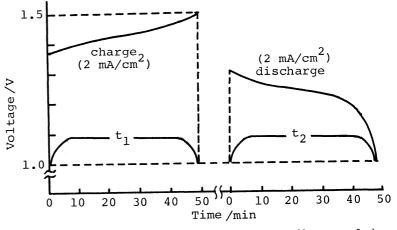


Fig. 2. Charge and discharge curves (1st cycle) of the ${\rm Zn} | {\rm ZnI}_2 | {\rm I}_2$ secondary cell using poly(2,5-thienylene) (10 mg) prepared by Method A.

of discharging time, the voltage drops to 1.0 V, where the discharging is stopped. Elongation of the pause time to 10 h does not affect the discharge curve. The agreement of the discharging time with the charging time indicates about 100% current efficiency of the present secondary cell. Energy efficiency is calculated as 85% from average charging and discharging voltages (1.43 and 1.22 V, respectively). The current and energy efficiencies as well as the current density (2 mA/cm 2) of the present secondary cell are much larger than those of reported secondary cells using other π -conjugated polymers (e.g., poly(acetylene) and poly(p-phenylene)) and/or other electrolyte (e.g., LiClO $_4$ and LiAsF $_6$).

As the number of the charge-discharge cycle increases, the charging and discharging times decrease presumably due to degradation of the polymer (Fig. 3).

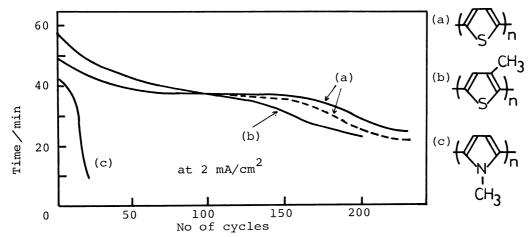


Fig. 3. Change of charging (\longrightarrow) and discharging (----) times of the ${\rm Zn}|{\rm ZnI}_2|{\rm I}_2$ secondary cells using polymers (10 mg) prepared by Method A. When the discharging time coincides with the charging time, only the charging time is shown. The cell depicted in Fig. 1 was used at room temperature.

Use of polymers prepared by Method B as the material for the positive electrode gives charge and discharge curves similar to those shown in Fig. 2. Figure 4 shows change of the charging and discharging times of the secondary cell using the polymer prepared by Method B.

As described above, the present results indicate that poly(2,5-thienylene), poly(2,5-pyrrolylene) and their derivatives prepared by the two methods serve as good materials for the positive electrodes of the secondary cells. Among the polymers, poly(2,5-thienylene), especially the one prepared by Method B, shows the best charge-discharge profile. The better charge-discharge profile of the secondary cell using poly(2,5-thienylene) prepared by Method B than that of the cell using poly(2,5-thienylene) prepared by Method A may be attributed to higher electrical conductivity of poly(2,5-thienylene) prepared by Method B than that of poly(2,5-thienylene) prepared by Method B than that of

Since the polymers are insensitive to air and thermally stable and the electrolyte is neither air-sensitive nor toxic, construction and handling of the present secondary cell are easy compared with the other secondary cells using other π -conjugated polymers (e.g, poly(acetylene) is air-sensitive) and/or electrolyte (e.g., LiAsF $_6$ is toxic). Due to the advantages of the present cell, it

may find practical use.

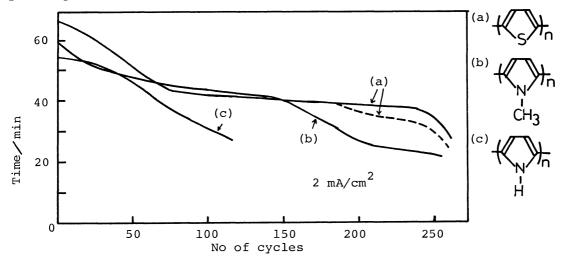


Fig. 4. As in Fig. 3 but for the use of polymers prepared by Method B.

References

- 1) T. Yamamoto, J. Chem. Soc., Chem. Commun., 1981, 187; T. Yamamoto and S. Kuroda, J. Electroanal. Chem. Interfacial Electrochem., 158, 1 (1983); T. Yamamoto, M. Zama, and A. Yamamoto, Chem. Lett., 1984, 1577.
- 2) D. MacInnes, Jr., M. A. Druy, P. J. Nigrey, D. P. Nairns, A. G. MacDiarmid, and A. J. Heeger, J. Chem. Soc., Chem. Commun., <u>1981</u>, 318 (1981); P. J. Nigrey, D. MacInnes, Jr., D. P. Nairns, A. G. MacDiarmid, and A. J. Heeger, J. Electrochem. Soc., <u>128</u>, 1651 (1981); K. Kaneto, M. Maxfield, D. P. Nairns, and A. G. MacDiarmid, J. Chem. Soc., Faraday Trans. 1 , <u>78</u>, 3417 (1982); K. Soga, M. Nakamaru, Y. Kobayashi, and S. Ikeda, Synth. Metals, <u>6</u>, 275 (1983); T. Osaka and T. Kitai, Bull. Chem. Soc. Jpn., <u>57</u>, 3386 (1984); H. Shirakawa, Kagaku Sosetsu, <u>42</u>, 120 (1983).
- 3) K. Kaneto, Y. Yoshino, and Y. Inuishi, J. Appl. Phys., <u>22</u>, L567 (1983); J. H. Kaufman, T.-C. Chung, A. J. Heeger, and F. Wudl, J. Electrochem. Soc., <u>131</u>, 2092 (1984).
- 4) L. W. Schacklette, R. L. Elsenbaumer, R. R. Chance, J. M. Sowa, D. M. Ivory, G. G. Miller, and R. H. Baughman, J. Chem. Soc., Chem. Commun., 1982, 361.
- 5) K. Sanechika, T. Yamamoto, and A. Yamamoto, Polym. Prepr., Jpn., 28, 966 (1979); T. Yamamoto, K. Sanechika, and A. Yamamoto, J. Polym. Sci., Polym. Lett. Ed., 18, 9 (1980); T. Yamamoto, K. Sanechika, and A. Yamamoto, Bull. Chem. Soc. Jpn., 56, 1497 and 1503 (1983); I. Khoury, P. Kovacic, and H. M. Gilow, J. Polym. Sci., Polym. Lett. Ed., 19, 395 (1981).
- 6) A. F. Diaz, K. K. Kanazawa, and G. P. Gardini, J. Chem. Soc., Chem. Commun., 1979, 635; O. Niwa and T. Tamamura, J. Chem. Soc., Chem. Commun., 1984, 817; G. Tourilon and F. Garniew, J. Electroanal. Chem. Interfacial Electrochem., 135, 173 (1982); M. Aizawa, S. Watanabe, H. Shinohara, and H. Shirakawa, Denki Kagaku, 52, 80 (1984); S. Hotta, T. Hosaka, and W. Shimotsuma, Synth. Metals, 6, 317 (1983).
- 7) H. Sakai, M. Mizota, Y. Maeda, T. Yamamoto, and A. Yamamoto, Bull. Chem. Soc. Jpn., in press.

(Received February 5, 1985)