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Poly(2,5-thienylene), poly(2,5-pyrrolylene), and their
derivatives are useful as materials for positive electrodes of
Zn|ZnIz|cation—exchange membranelZn12|I2 secondary cells, which
show about 100% current efficiency and 85% energy efficiency

and are rechargeable more than 200 times.

Utilization of electric-conducting m-conjugated polymers as materials for
electrodes of primary and secondary cells is the subject of recent interest.1-4)
As for the preparative methods of poly(2,5-thienylene), poly(2,5-pyrrolylene), and
their derivatives, the following two methods have been developed.

Method A: Ni-catalyzed dehalogenation polycondensation of Zé?—dihalothiophene, its

derivatives, and N-substituted 2,5-dihalopyrrole.
Method B: electrochemical oxidation of thiophene, pyrrole, and their derivatives.s)
We previously reported that poly(2,5-thienylene) prepared by Method A served
as materials for primary and secondary cells using metal iodides as electrolytes.l)
We now report charge-discharge profiles of anZnIzlcation-exchange membranelZnIz|I2
(hereafter denoted as ZnIZnIlez) secondary cells using the polymers prepareds?y
Methods A and B as materials for positive electrodes. The polymers absorb I2
form positively charged polymer and In- (15_ for poly(2,5-thienylene)7)) and

iodine-polymer adducts thus formed are electrically conductive. Therefore, the

to

iodine-polymer adducts serve as good active materials of positive electrodes. The
positive electrodes were prepared as described below.

Electrode using polymer prepared by Method A: A CHC13—soluble fraction
polymer was dissolved in CHCl3. To the CHCl3 solution, carbon powder (Kejen Black
EC, 20 wt-% per polymer) was added with stirring. A part of the suspension thus
obtained was taken out with a syringe and spread uniformly on a carbon fiber plate

(Kureha carbon fiber KGF 100, 10 mm x 10 mm), and CHCl3 was removed by evaporation.

5) of the

The amount of polymer overlaid on the carbon fiber plate was 10 mg.

Electrode using polymer prepared by Method B: An anhydrous C6H5NO2 solution con-
taining 0.2 mol/dm3 of monomer (thiophene, pyrrole, or N-methylpyrrole) and 0.1
mol/dm of [Bu4N][BF ] was electrolyzed for 2 h at 5 °C at constant electric
current (1 mA/cm ) by using the carbon fiber plate (10 mm x 10 mm) and platinum
plate as anode and cathode, respectively. The electrolysis gave a film of polymer
(3-5 mg) on the surface of the carbon fiber plate. The polymer-coated carbon

fiber plate was used as the positive electrode of the secondary cell.
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Figure 1 shows a sketch of the Zn]Zn12|I2 secondary cell. An aqueous solution
of ZnI2 (0.5 mol/dm3) is used as catholyte (Cl in Fig. 1) and anolyte (CZ)' and the
catholyte and anolyte are separated by a cation-exchange membrane (Selemion CMV,
thickness = 0,13 mm, E in Fig. 1). When the cell is charged, I ion in the anolyte
loses its charge at the polymer-coated positive electrode (F) and 12 thus formed is
trapped by the polymer. A part of 12 not trapped by the polymer exists as pure 12

or 13— (formed by the reaction of I and I,) in the anode compartment (C,).

Charge (positive electrode): I ~—— (1/2)1, + e (1)

—_—

I, + polymer iodine-polymer adduct (2) 1, + I = I3— (3)

The cation-exchange membrane prevents moving of I3_ to the negative electrode side,

and thus the self-discharge of the cell by the reaction of Zn and I3 (Zn + I3 —>
ZnI2 + I") is prevented. The negative electrode reaction is expressed as follows:

Charge (negative electrode): Zn2+ + 2e —=17n (4)

At the stage of discharge, reactions reverse to those expressed by Egs. 1 and 4

take place. Figure 2 shows charge and discharge curves of the ZnIZn12|12 secondary

A, and A,: board, B: negative elec-

1 2
trode (Zn), Cl and Cy: glass fiber
(Toyo Roshi type GA 100, 10 mm x

10 mm) impregnated with an agqueous

solution (0.1 cm3) of ZnI2 (0.5

mol/dm3), Dl and D2: board with

hole (10 mm x 10 mm), E: cation-

exchange membrane, F: polymer-
coated carbon fiber plate (10 mm x
10 mm), G: Pt-plate.

Fig. 1. Sketch of secondary cell.
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is stopped. After 1 min of
pause time, the cell is dis- Fig. 2. Charge and discharge curves (1st cycle)
charged with 1.32 V of ini-

tial voltage. After 48 min

of the Zn|Zn12|I2 secondary cell using poly(2,5-
thienylene) (10 mg) prepared by Method A.
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of discharging time, the voltage drops to 1.0 V, where the discharging is stopped.
Elongation of the'pause time to 10 h does not affect the discharge curve. The
agreement of the discharging time with the charging time indicates about 100% cur-
rent efficiency of the present secondary cell. Energy efficiency is calculated as
85% from average charging and discharging voltages (1.43 and 1.22 V, respectively).
The current and energy efficiencies as well as the current density (2 mA/cmz) of
the present secondary cell are much larger than those of reported secondary cells
using other m-conjugated polymers (e.g., poly(acetylene) and poly(p-phenylene))
and/or other electrolyte (e.g., LiClO4 and LiAsFG).2_4)
As the number of the charge-discharge cycle increases, the charging and dis-

charging times decrease presumably due to degradation of the polymer (Fig. 3).
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Fig. 3. Change of charging ( ) and discharging (------ ) times of the

ZnIZn12|I2 secondary cells using polymers (10 mg) prepared by Method A. When
the discharging time coincides with the charging time, only the charging time

is shown. The cell depicted in Fig. 1 was used at room temperature.

Use of polymers prepared by Method B as the material for the positive elec-
trode gives charge and discharge curves similar to those shown in Fig. 2. Figure
4 shows change of the charging and discharging times of the secondary cell using
the polymer prepared by Method B.

As described above, the present results indicate that poly(2,5-thienylene),
poly(2,5-pyrrolylene) and their derivatives prepared by the two methods serve as
good materials for the positive electrodes of the secondary cells. Among the
polymers, poly(2,5-thienylene), especially the one prepared by Method B, shows the
best charge-discharge profile. The better charge-discharge profile of the second-
ary cell using poly(2,5-thienylene) prepared by Method B than that of the cell
using poly(2,5-thienylene) prepared by Method A may be attributed to higher elec-
trical conductivity of poly(2,5-thienylene) prepared by Method B than that of
poly(2,5-thienylene) prepared by Method A.5’6)

Since the polymers are insensitive to air and thermally stable and the elec-
trolyte is neither air-sensitive nor toxic, construction and handling of the
present secondary cell are easy compared with the other secondary cells using
other m-conjugated polymers (e.g, poly(acetylene) is air-sensitive) and/or elec-

trolyte (e.g., LiAsF6 is toxic). Due to the advantages of the present cell, it
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may f£ind practical use.
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Fig. 4. As in Fig. 3 but for the use of polymers prepared by Method B.
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